
1. Introduction
Human-induced climate change has resulted in a notable increase in extreme events. For the European region, 
it includes more intense and frequent heatwaves (IPCC, 2014), increase in heavy precipitation events (Nissen & 
Ulbrich, 2017), and snow cover reduction in Northern Europe (Croce et al., 2018). Also, it is projected that the 
winter temperature in Northern Europe and the summer temperature in Mediterranean regions may exceed the 
global warming rate of the previous century (IPCC, 2013). The vulnerability of European cities to higher tem-
peratures continues to be highlighted with reports of large numbers of fatalities. For example, the 2003 heatwave 
event caused more than 70,000 fatalities across Europe (Robine et al., 2008), and from 1992 to 2017, heatwaves 
might have led to more than 37,500 fatalities in Germany alone (An der Heiden et al., 2020).

Urban dwellers are highly susceptible to heatwaves where the fatality risk increases by 4.5% for every 1°C 
increase in heatwave intensity (Anderson & Bell, 2010). The higher vulnerability is primarily due to the popula-
tion's density, and the pre-existing Urban Heat Island effect, which produces higher temperature in urban areas 
than the underdeveloped surroundings (Oke, 1982). The warming in built-up areas has been attributed to the 
modified thermodynamic properties of artificial surfaces, reduction of wind speed due to the increased urban 
roughness, long-wave radiation trapping during night time, lack of green surfaces, and the anthropogenic heat 
generated by human activities (Mahmood et al., 2014; Schwarz & Manceur, 2015). The integration of climatic 
changes and urbanization makes the dynamics of heatwave events more complex. However, by enabling the 
models with better physics and data capabilities, simulating such events over the urban areas could be improved 
(Hertwig et al., 2020; Zhao et al., 2021).

The Weather Research and Forecasting (WRF) model is a community model widely used in numerical weather 
prediction and (regional) climate simulations (Powers et al., 2017). WRF has dynamically integrated land surface 
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models (LSMs) with urban canopy models (UCMs) to represent the physical processes and land surface fluxes in 
an urban environment. The Noah land surface model (Chen & Dudhia, 2001; Chen et al., 1996; Ek et al., 2003) 
represents the land surface elements using simplified bulk surface properties. A modification of the Noah-LSM 
model is the Noah-MP, which incorporates multiple parameterizations for a range of land-atmospheric interaction 
processes (Niu et al., 2011; Z. L. Yang et al., 2011). The WRF model (V4.1) employs three different urban mod-
els, namely, the single-layer UCM (Chen et al., 2011), multi-layer UCM [building environment parameterization 
(BEP); Martilli et al., 2002], and building energy model (BEM; Salamanca & Martilli, 2010) schemes.

The combination of different LSMs and UCMs provides different physics parameterization options that permit 
ensemble simulations. For example, simulations of the series of heatwave events in Australia showed that the 
default Noah-LSM had a better performance than Noah-MP (Imran et al., 2018), while the Noah-MP coupled 
with the BEP-BEM improved the root mean square error (RMSE) of the simulated air temperature estimates (in 
Beijing, China) by 0.9°C (32%) compared to the Noah-LSM (Xu et al., 2018). Thus, depending on the applica-
tion of interest, geographical locations, and the problem's spatiotemporal scale, it is likely that the physics choice 
could vary and requires additional studies.

One of the requirements for UCMs is identifying data that represents the scales and applications being considered 
(Demuzere et al., 2017). In particular, the urban morphology may not be available for many cities, or the data 
quality may not meet the required spatiotemporal resolution (Salamanca et al., 2011). In recent years, efforts such 
as the World Urban Database Access Portal Tool (WUDAPT) have helped to generate a consistent urban database 
using local climate zone (LCZ) maps. The LCZ framework usually classifies the urban region into ten different 
urban classes based on the roughness and density of buildings, surface cover around the feature, and thermal 
properties of the materials (Ching et al., 2018; Stewart & Oke, 2012). Examples of studies incorporating LCZ 
information into WRF include simulations over Madrid, Spain (Brousse et al., 2016), Vienna, Austria (Ham-
merberg et al., 2018), Szeged, Hungary (Molnár et al., 2019), Mumbai, India (Patel et al., 2020), and Bologna, 
Italy (Zonato et al., 2020). These studies consistently report an improvement in the model skill to simulate air 
temperature, precipitation, and wind speed.

However, these studies are on a single city, while provide insights on urban-atmospheric processes within urban 
boundaries, may not account for the synergistic interactions between urban areas and the larger regional environ-
ments. Such interactions may have substantial implications in exploring how heatwave impacts urban areas (Li & 
Bou-Zeid, 2013). Therefore, it is important to understand the regional scale feedback of the urban environments 
on a synoptic scale event such as a heatwave. Also, the impacts of the heatwaves are worst over the urban areas, 
and in Europe approximately 75% of the total population lives in the urban environment (World Bank, 2021). 
Thus, it becomes necessary to simulate heatwaves and document the simulation uncertainties.

In this study, we advance the understanding of the impacts of large scale urban feedback on the 2017 European 
heatwave event. The simulations were carried out using WRF's Noah and Noah-MP LSMs and with and without 
LCZ information.

2. Methodology
2.1. 2017 June Europe Heatwave

June 2017 was remarkable in Europe as it was the starting point for exceptional hot weather that prevailed for the 
next 3 months (Hartfield et al., 2018). The heatwave started on 10 June and extended till 23 June, 2017, peaking 
between 16 and 18 June. The onset was from 10 to 15 June, and the decay period was 19–23 June. In Spain, it was 
documented as the hottest June since 1965, and in Switzerland and France, it was the second hottest June since 
1864 and 1990, respectively. Local meteorological observatories reported extreme temperatures, such as, on 21 
June, the Heathrow airport (UK) recorded 307.6 K (34.5°C), the warmest June day since 1976. The minimum 
night temperatures reached above 298.1 K (25°C) in Switzerland, leading to the warmest nights since 1981. The 
extreme temperature led to drought conditions across western Europe and contributed to substantial wildfires. 
Detailed information about the 2017 June heatwave event is provided in Sánchez-Benítez et al. (2018).
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2.2. Modeling Framework

The WRF model (version 4.1.4; Skamarock et al., 2019) is a non-hydrostatic 
primitive equation model that utilizes different physics parameterization op-
tions. The model domain was configured with a 9 km grid spacing (547 × 462 
grid cells) with 51 vertical levels covering Europe (shown in Figure 1). The 
initial and boundary conditions are provided by National Centers for Envi-
ronmental Prediction Final Operational Model Global Tropospheric Anal-
yses (NCEP FNL) data (available at http://rda.ucar.edu/datasets/ds083.2), 
which is available at a 6-hr and 0.5° temporal and spatial resolution, respec-
tively. The simulations started on 8 June 2017 00:00 UTC and ended on 25 
June 2017 00:00 UTC. The following parameterization schemes were used 
in the study: the rapid radiative transfer model scheme (Mlawer et al., 1997) 
for longwave radiation, Goddard (Chou & Suarez, 1994) shortwave scheme, 
Bougeault-Lacarrère (Bougeault & Lacarrere, 1989) for the planetary bound-
ary layer, WRF single moment six-class (Hong & Lim, 2006) scheme as mi-
crophysics, Kain-Fritsch (Kain, 2004) as cumulus scheme, and multi-layer 
BEP (Martilli et al., 2002) as the urban scheme, which is similar to the sug-
gestions by Stergiou et al. (2017) and Politi et al. (2018). Anthropogenic heat 

flux (AHF) from building space heating and cooling is considered by setting a fixed temperature inside buildings 
in the BEP. AHF from other sources (e.g., human metabolism, vehicles, and power plants) are thereby neglected. 
The simulations are performed using two LSMs that is, Noah and Noah-MP.

For the land use/land cover (LULC), the Moderate Resolution Imaging Spectroradiometer (MODIS) data is used 
in two ways: (a) the default MODIS LULC which has one urban class “Urban and Built-up Lands” (Figure S1a 
in Supporting Information S1); and (b) the MODIS LULC product in which its original urban land cover is re-
placed by the 10 urban LCZ classes, available from the European LCZ map at 100 m spatial resolution (Demuzere 
et al., 2019a, 2019b; hereafter denoted as WUDAPT LULC; Figure S1b in Supporting Information S1). Given 
the MODIS LULC availability at 1 km spatial resolution, the LULC data for each urban grid was defined based 
on the majority class classified by WUDAPT within that grid.

An important objective of WUDAPT, WUDAPTs community project, is to generate urban canopy information 
and provide the (open-source) tools to facilitate urban-focused modeling studies (Ching et al., 2018). As such, 
WUDAPT's Level-0 information (the LCZ maps) can be converted to urban canopy parameters (UCP) that can be 
used in models (Ching et al., 2019). Since the work of Brousse et al. (2016), the level-0 WUDAPT information, 
the LCZ maps, have been used in WRF. The WUDAPT-to-WRF tool (Martilli et al., 2016) is publicly availa-
ble, and assigns the corresponding morphological, radiative, and thermal UCPs to the LCZ class corresponding 
to each WRF grid cell. However, Zonato et al. (2020) recently argued that it is better to assign morphological 
parameters directly to the high-resolution LCZ grid, afterward aggregated to the lower-resolution WRF grid. 
The method consequently produces a unique urban morphology parameter value for each WRF grid cell, found 
to be more efficient in reproducing urban boundary layer features especially in the outskirts of cities and is in 
line with the WUDAPT-to-COSMO routine developed by Varentsov et al. (2020). Since an updated version of 
the WUDAPT-to-WRF tool is currently still being developed, the default approach by Brousse et al. (2016) and 
Martilli et al. (2016) is used here where the LULC is resampled from 1 to 9 km resolution based on the majority 
class or dominant category. For example, if a 9 km resolution grid consist of three classes LCZ 1 (30%), LCZ 2 
(30%), and LCZ 3 (40%), then LCZ 3 will be assigned to that grid. This method is commonly used (default) in the 
WRF modeling (use dominant category only). If the urban or LCZ coverage is less than 50% but dominant than 
the urban or LCZ will be used, with the urban fraction same as the urban or LCZ. The urban parameters used in 
the study are shown in Table S1 in Supporting Information S1.

After resampling the WUDAPT map, the following LCZs (percentage urban cover with respect to total LCZ area) 
were available for analysis: LCZ 2 (compact mid-rise; 1%), LCZ 5 (open mid-rise; 2%), LCZ 6 (open low-rise; 
76%), LCZ 8 (large low-rise; 10%), and LCZ 9 (sparsely built; 11%). All other urban LCZs were unavailable at 
the spatial resolution of 9 km. Examples of the differences between the urban area representation in the MODIS 
and WUDAPT are shown in Figure 2. It can be noted that a few pixels in WUDAPT are represented by MODIS 
urban class due to the WRF pre-processing system.

Figure 1. The Weather Research and Forecasting model (WRF) domain 
configuration over the study area (Europe) with topography (m). The WRF 
domain was configured in a 9 km grid spacing with the initial and boundary 
condition from National Centers for Environmental Prediction Final 
Operational Model, for the period of 8 June to 25 June.

http://rda.ucar.edu/datasets/ds083.2
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Noah LSM has been developed based on multi-institutional cooperation (Chen et al., 1996; Ek et al., 2003) and 
considers the land surface as a blend of surface elements defined by the bulk properties. Despite its vast appli-
cations in operational weather and climate predictions, the Noah model is known to have biases in simulating 
surface features and fluxes (Slater et al., 2007). Therefore, Niu et al. (2011) augmented the representations of land 
surface processes in Noah by implementing multiple parameterization schemes (named as Noah-MP). Noah and 
Noah-MP differ in the conceptualization of five major processes including energy balance in vegetation canopy, 
vegetation phenology, soil infiltration, snowpack, and the interaction between groundwater soil moisture and 
runoff.

Noah considers an implicit vegetation-soil surface to drive surface energy components. A single layer ener-
gy-mass balance for snow simulations and the absence of groundwater transfer and storage impedes Noah ability 
to accurately account for heat and energy exchange between soil-vegetation-atmosphere continuum. In Noah-MP, 
a separate vegetation canopy layer has been implemented that enables the model to simulate the radiation trans-
mitted and attenuated through and below canopy. Noah-MP also considers different biophysical options for tran-
spiration, a dynamic vegetation model, a multi-layer snow energy–mass balance model, surface water infiltration, 
and groundwater processes.

2.3. Numerical Experiments

A 2 × 2 experimental setup was designed with the WRF domain covering the 2017 Europe heatwave (8–25 June). 
Two experiments were performed using the Noah model: one used the default MODIS LULC (denoted as N), 
and the second used the WUDAPT LULC (denoted as the N-W). Other two experiments were performed with 
the Noah-MP LSM: one used the default MODIS LULC (denoted as N-MP), and one used the WUDAPT LULC 
(denoted as the N-MP-W). The combination of two LSMs options (Noah and Noah-MP) without and with urban 

Figure 2. Examples of urban areas representation in the Moderate Resolution Imaging Spectroradiometer and World Urban Database and Access Portal Tool land use/
land cover maps for the United Kingdom (a, b), Italy (c, d), Germany (e, f), and France (g, h).
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heterogeneity (MODIS and WUDAPT, respectively) were evaluated for their performance to simulate the heat-
wave event. All other physics and inputs remained the same for all the simulations, as noted above.

2.4. Observations and Model Evaluation

Daily mean (Tmean), maximum (Tmax), and minimum temperature (Tmin) were retrieved from the E-OBS tempera-
ture data set (v 22.0 e; Cornes et al., 2018) and used to evaluate the model output. E-OBS provides quality-con-
trolled gridded data at the spatial resolution of 0.1 degrees (daily) from more than 4,000 stations spread all over 
Europe. The observations have been validated and used as reference measurements in various meteorological 
studies conducted over Europe (Krauskopf & Huth, 2020; Lorenz et al., 2019). Due to a relatively sparse net-
work of stations, Kyselỳ and Plavcová (2010) have reported on the interpolation uncertainty of the old versions 
of E-OBS products, which was resolved with the denser network across Europe and using the ensemble version 
(Cornes et al., 2018) as we used in our study.

We highlight that the in situ network's density used in developing the gridded E-OBS data may not adequately 
capture and represent the urban heterogeneity. Also, the density across different LCZs for the study domain is 
unclear and should be undertaken as done, for instance, by Montandon et al., 2011 for different landscape types 
represented in the Global Historical Climate Network. However, given that no other homogeneous high-resolu-
tion gridded air temperature datasets were available that do properly account for urban regions, and the fact that 
the E-OBS data and the WRF runs are of similar spatial scale (the E-OBS data set is prepared at 0.1° similar to 
the 9 km grid spacing in the WRF simulations), we assume that spatial aggregation of the area represented within 
the grids will be comparable with each other.

The simulated 2-m air temperature (within the urban canopy layer), which matches the setup of the observation 
stations, was evaluated against the observations using the unbiased RMSE (uRMSE) as given by the following 
equation:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =

√

√

√

√

√

[

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑓𝑓𝑖𝑖 − 𝑜𝑜𝑖𝑖)
2

]2

−

[

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑓𝑓𝑖𝑖 − 𝑜𝑜𝑖𝑖)

]2

 (1)

where fi is the forecast value, oi is the observed value, and n is the total number of observations. The observed 
and simulated temperature were spatially averaged over the urban areas, and for each LCZ were compared using 
uRMSE and Taylors diagram (Taylor, 2001) for correlation coefficient, standard deviation, and RMSE. It facil-
itates the intercomparison of different model simulations. The resulting comparison helped in identifying the 
combination of LULC and LSM that generates the least error.

To understand the nonlinear interaction between the LSM and LULC, we used the factor separation method pro-
posed by Stein and Alpert (1993). The following annotations are used for the influencing factors:

𝑓𝑓0 ∶ N, only Noah (both factors set to default) 

𝑓𝑓1 ∶ N-W, Noah with WUDAPT (LULC effect) 

𝑓𝑓2 ∶ N-MP, only Noah MP (LSM effect) 

𝑓𝑓12 ∶ N-MP-W, Noah MP with WUDAPT (both LULC and LSM effect) 

The model results were analyzed for the direct and interactive effects as:

𝐹𝐹1 = 𝑓𝑓1 − 𝑓𝑓0 (2)

𝐹𝐹2 = 𝑓𝑓2 − 𝑓𝑓0 (3)

𝐹𝐹12 = 𝑓𝑓12 + 𝑓𝑓0 − 𝑓𝑓1 − 𝑓𝑓2 (4)

where F1 is the direct LULC effect, F2 is the direct effect of the LSM, and F12 is the combined or interactive 
effect of LULC and LSM on the simulation of the event. We applied the factor separation analysis to quantify 
the relative importance of (a) the LULC, (b) the land surface parameterization, and (c) the combined effect of 
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LULC and land surface parameterization. Similar analysis have been carried out in Niyogi et al. (2006) and L. 
Yang et al. (2019) for separating the contribution of urban environment and topography to the spatial-temporal 
distribution of rainfall in urbanized regions.

The factor separation of the simulations was also calculated for the maximum heat index (HI) as a variable. The 
HI is a measure of the “thermal sensation” temperature for shaded locations that quantify the actual heat being 
experienced by individuals (Rothfusz & Headquarters, 1990). Thus, we used it to better represent the heatwave 
impact on human thermal comfort. In this study, HI was calculated using the standard procedure adopted by the 
U.S. National Weather Service formula (https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml) that 
was originally proposed by Steadman (1979) and modified by Rothfusz and Headquarters (1990).

𝐻𝐻𝐻𝐻 = −0.5[𝑇𝑇 + 61.0 + (𝑇𝑇 − 68.0)1.2 + (0.1𝑅𝑅𝐻𝐻)] − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 (5)

For the environmental conditions that warrant a HI > 80 °F, the HI formula is replaced by Equation 6. Factor 
separation was computed using these equations of HI.

𝐻𝐻𝐻𝐻 =
[

−42.379 + 2.050𝑇𝑇 + 10.143𝑅𝑅𝐻𝐻 − 0.225(𝑇𝑇 )(𝑅𝑅𝐻𝐻) − 0.007(𝑇𝑇 )
2
− 0.055 × (𝑅𝑅𝐻𝐻)

2

+ 0.001(𝑇𝑇 )
2
(𝑅𝑅𝐻𝐻) + 0.001(𝑇𝑇 )(𝑅𝑅𝐻𝐻)

2
− 1.99 × 10−6(𝑇𝑇 )

2
(𝑅𝑅𝐻𝐻)

2
]

− 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎

 (6)

where, T is the temperature in degrees F (°F), RH is the relative humidity (%), HI is the heat index expressed as 
an apparent temperature in °F (converted to °C), Fadj is an adjustment factor that is applied for certain humidity 
and air temperature conditions:

⎧

⎪
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⎪

⎨

⎪

⎪

⎪

⎩
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17

𝑅𝑅𝑅𝑅 𝑅 85%; 80 𝑅 𝑇𝑇 𝑅 87◦𝐹𝐹 → 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑅𝑅𝑅𝑅 − 85

10
×
87 − 𝑇𝑇

5

For all other conditions → 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 0

 

The Steadman method used in this study is one possible measure for thermal sensation and other methods such 
as physiological equivalent temperature or universal thermal climate index could be used for heat index assess-
ments. However, we used this operational heat index as it provided a straightforward concept from decision-mak-
ing standpoint where the error and uncertainty of model simulations in human comfort needs to be understood.

2.5. Surface Energy Balance

Positive feedback from irregular surface boundary conditions has been reported as an important criterion for 
generating and regulating drought and heatwaves (Miralles et al., 2014; Teuling et al., 2010). The foundation for 
such feedback involves the changes in the surface energy budget. Therefore, we analyzed the diurnal fluxes in the 
urban areas during the heatwave event by considering how the energy is partitioned in the different simulations. 
The surface energy balance provides insights to understand the regional heat budget and mechanisms that cause 
temperature changes among the experiments. The following equation gives the surface energy balance:

𝑄𝑄∗ = 𝑄𝑄ℎ +𝑄𝑄𝑒𝑒 +𝑄𝑄𝑔𝑔 (7)

where Q* is net radiation, Qg is the ground heat flux, Qe is the latent heat flux, and Qh is the sensible heat flux. 
The ground heat flux refers to the energy transferred in the soil and is typically much smaller than the other flux-
es. The net incoming solar radiation is balanced by the changes in sensible and latent heat transfers (neglecting the 
soil heat storage). Therefore, considering net radiation to be roughly stable, increases in sensible heat flux must 
be compensated by decreases in latent heat flux.

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
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3. Results and Discussions
3.1. Model Evaluation

The model performance was evaluated over the entire land domain (i.e., by masking water bodies). The study 
region was divided into two: (a) land use categories except water (referred as land) and a subcategory of (b) urban 
areas (including all urban regions across Europe). The analysis (i.e., uRMSE and Taylor diagram) was carried out 
over these two categories by comparing the spatially averaged air temperature values from the WRF simulations 
against the E-OBS data set (Figures 3 and 4).

Figure 3 shows the uRMSE and Taylor diagrams of Tmean, Tmax, and Tmin for the WRF simulations. The Taylor 
diagrams show the relative performance and accuracy with respect to the observations (stars on the x-axis). The 
simulated values that lie nearest to their references (stars on the x-axis) signify the best agreement with the obser-
vations (higher correlation and lower error). The simulated values on the dashed arc (connecting x- and y-axis) 

Figure 3. The statistical analysis averaged over the land (top row) and urban regions (bottom row) of the study area for the daily mean (Tmean), minimum (Tmin), and 
maximum (Tmax) temperature including, the unbiased root mean squared error (first column) and Taylor accuracy score (second column). The blue rectangles on the 
heatmaps denote the most accurate simulations. In the Taylor diagram, dotted gray lines connecting the X- and Y-axes denote the standard deviation; the dashed lines 
indicate the standard deviation of the observations (Obs), and the solid black radial lines represent the mean error, dotted blue radius connecting the center to arc axis 
show the Pearson correlation. N: Noah; N-MP: Noah MP; N-W: Noah + WUDAPT; and N-MP-W: Noah MP + WUDAPT simulations.
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represent closer variation amplitude with the observed values. The air temperature simulations over land (natural 
land also considering urban areas) showed a higher accuracy compared to the values simulated over urbanized 
areas. The heatmaps show that the N-W experiment simulated the Tmean and Tmin with the lowest uRMSE, and 
Tmax was simulated the best (lowest uRMSE) with the N-MP-W both for land and urban areas. When Noah was 
used (N and N-W simulations), the temperature variations were in closer agreement with the observations, while 
using Noah-MP (N-MP and N-MP-W simulations) yielded a better correlation with the observations (shown in 
Taylor Diagram). Incorporating LCZs produce more accurate simulations, particularly over the urban areas. The 
comparison of Tmean, Tmax, and Tmin over the LCZs are provided in Figure 4.

Figure 4. Same as Figure 3 but for different local climate zones. N: Noah, N-MP: Noah MP; N-W: Noah + WUDAPT; and 
N-MP-W: Noah MP + WUDAPT simulation.
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The LCZs comparison highlighted a more accurate simulation from the Noah compared to the Noah-MP for Tmean 
and Tmin, while Tmax was better simulated with Noah-MP. Incorporating LCZs in the simulations significantly 
reduced Tmean error in all LCZs (especially for LCZ 5). Nevertheless, the use of LCZs reduced the accuracy of 
Tmax when paired with the land surface models (the N-W experiment). In the case of Tmin, inconsistent results were 
observed when LCZs were incorporated in the simulations (as the error magnitude was reduced in the LCZ 2, 
LCZ 5, and LCZ 6 and increased in the LCZ 8 and LCZ 9). It is important to note that the urban stations are most 
likely to be located in pseudo-natural settings (such as parks) rather than over paved surfaces. This might explain 
the systematic bias in the urban simulations and the relative improvement over LCZ9, which is close to rural.

Overall, comparing the land surface parametrizations (N and N-MP), a higher positive bias was observed when 
the Noah-MP scheme was used. The Noah-MP simulated higher temperature due to the higher sensible heat (not 
shown here) than the Noah. When the LCZs were implemented into the LSMs (comparing N-W and N-MP-W), 
the simulation errors were reduced significantly. These improvements were more pronounced over the urban 
areas than in other regions. The performance (accuracy) of the experimented configurations to be coupled with 
the WRF could be ranked as Noah + WUDAPT > Noah > Noah-MP + WUDAPT > Noah-MP for the mean 
and minimum temperature and Noah-MP + WUDAPT > Noah-MP > Noah > Noah + WUDAPT for maximum 
temperature.

Consistent with our findings, Imran et al. (2018) have reported better average air temperature simulations from 
the Noah LSM compared to the Noah-MP model. The potential of WUDAPT in improving modeled temperatures 
with WRF has been highlighted in Leconte et al. (2015), Martilli et al. (2016), and Brousse et al. (2016), although 
these studies have considered only one city. It is important to note that the change in the representation of the 
urban areas (using LCZs) over the continent-scale reduces the simulation errors.

3.2. Time Series Analysis

3.2.1. Land and Urban

Figure 5 shows the time series of the mean, minimum, and maximum temperature averaged separately over land 
and urban regions of Europe for the entire simulation period. The simulations over land resulted in a closer agree-
ment with the observations than the simulated values over the urban regions. Additionally, when Noah was select-
ed as the LSM (N and N-W experiments), the mean and minimum daily temperatures were simulated more accu-
rately. The maximum daily temperature was better simulated with Noah-MP (N-MP and N-MP-W simulations).

All the simulations showed a positive systematic bias (overestimation) compared to the observation except for the 
maximum temperature resulting from the N and N-W experiments. Coupling LCZs with the Noah and Noah-MP 
experiments reduced the magnitude of the simulated temperature. The reduction was more notable over the urban 
regions (particularly for the maximum daily temperature). Additional information for temperature values is pro-
vided in the form of the kernel density function shown in Figures S3–S5 in Supporting Information S1.

3.2.2. Local Climate Zones

The time series of the simulated mean air temperature over the urban region considering different LCZs is shown 
in Figure 6. The most accurate simulations were carried out for LCZs 8 and LCZ 9. Temperature simulations 
in LCZs 2 and LCZ 5 resulted in a higher bias compared to other LCZs. For LCZ 2 and LCZ 9, the N-W and 
N-MP-W simulations show nearly similar values to their paired experiments (N and N-MP, respectively). This 
similarity was attributed to the similar parameter values of LCZ 2 and LCZ 9 to the default (MODIS) values 
attributed to the urban and barren-sparsely vegetated class in N and N-MP simulations. A higher air temperature 
was found in LCZ 2 (reaching ≈300 K) due to the presence of a high urban roughness and more radiation absorp-
tion. On the contrary, LCZ 9 was the coolest regions for which during 19–22 of June 2017, the air temperature 
dropped below 283 K. The decreased temperature in the LCZ 9 was due to vegetation leading to more moisture 
availability (relative humidity) than the rest of the LCZs, which in turn could cause an increase in the latent heat 
flux and reduce the air temperature (more details are discussed in the following section).
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3.3. Surface Energy Flux

The model estimates for the surface energy balance components were extracted, spatially averaged over the urban 
areas, and temporally averaged for the simulation period. The results are shown in Figure 7. Interestingly, net 
radiation is similar for all simulations except for an increase in N-W. By partitioning the net radiation into the 
sensible, latent, and ground heat flux (Figures 7a–7c), substantial differences among the simulated components 
were observed. The N and N-MP simulations followed a nearly similar pattern for surface energy balance com-
ponents. The use of LCZs resulted in lower sensible heat flux and higher latent and ground heat flux simulations 
(more notably in the N-W experiments).

By implementing the urban LCZs, the sensible heat flux was reduced over 40% and 30% in the N-W, and N-MP-W 
simulations, respectively, and latent heat flux was increased 113% in N-W and 133% in N-MP-W, respectively. 
This significant change occurred because the urban region is a paved surface with low evapotranspiration (smaller 
latent heat flux) and allocate the available energy to heating the surface (increasing sensible and ground flux). 
The sensible heat flux simulated by the N-W and N-MP-W showed a maximum value of 281 and 334 W/m2, 
respectively, while this value was 468 and 475 W/m2 for N and N-MP simulations. Categorizing the urban areas 
into different LCZs (that includes more vegetation than MODIS) caused the simulations to have higher evapo-
transpiration, causing lower estimates for sensible and ground heat fluxes and affecting the simulated air temper-
ature. The simulated latent heat flux showed a maximum value of 241 and 150 W/m2 for the N-W and N-MP-W 
simulations, and 42 and 22 W/m2 for the N, and N-MP simulations, respectively.

Additionally, altering the default LULC (in N and N-MP experiments) with LCZs (N-W and N-MP-W experi-
ments) affected the overall 10-m wind speed within the urban regions. Figure 8a shows an increase in modeled 
wind speed using the WUDAPT parametrizations (N-W and N-MP-W). The changes in the wind speed and 2-m 
relative humidity using WUDAPT LULC only occurred on the magnitude, and the variability of them remained 
similar as simulated by the control experiments (N and N-MP). The wind speed showed 1.6 m/s, and relative 

Figure 5. (a) Mean, (b) minimum, and (c) maximum temperature (K) over land and urban (d–f) from observations (Obs; solid black line), Noah (N; solid teal line with 
circle markers), Noah-MP (N-MP; solid orange line with square markers), Noah + WUDAPT (N-W; teal dashed line with circle markers), and Noah-MP + WUDAPT 
(N-MP-W; orange dashed line with square markers) simulations. The yellow shade shows the decaying phase of the heatwave period (19–22 June 2017).
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humidity showed 5%–8% of systematic difference between the paired experiments (N and N-MP experiments vs. 
N-W and N-MP-W experiments).

During the heatwave event, all four experiments depicted a reduction in the relative humidity and wind speed (not 
consistent for all LCZs). During the decay period (19–22 June 2017), the average wind speed for the WUDAPT 
simulations was approximately 60% higher than the N and N-MP simulations. Higher wind speed with the incor-
poration of the WUDAPT caused more energy exchange and led to lower (and more accurate) air temperature in 
the N-W and N-MP-W simulations (discussed above in Figures 6 and 7).

Overall, the similar wind speed using the different LSMs suggested that the choice of LSMs did not significant-
ly affect the wind speed simulations. However, the choice of LULC showed a more highlighted role given the 

Figure 6. Mean temperature (K) over (a) compact mid-rise [local climate zones (LCZ 2)], (b) open mid-rise (LCZ 5), (c) 
open low-rise (LCZ 6), (d) sparsely built (LCZ 8), and (e) large low-rise (LCZ 9) from observations (Obs; solid black line), 
Noah (N; solid teal line with circle markers), Noah-MP (N-MP; solid orange line with square markers), Noah + WUDAPT 
(N-W; teal dashed line with circle markers), and Noah-MP + WUDAPT (N-MP-W; orange dashed line with square markers) 
simulations. The yellow shade indicates the decaying phase of the heatwave period (19–22 June 2017).
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significant difference in the wind speed values in the N-W and N-MP-W experiments compared to the N and 
N-MP experiments. It should be noted that these changes were not consistent among the different LCZs. Higher 
wind speeds were observed over the LCZs 5, LCZ 6, and LCZ 8 (Figure 9). For very compact and very sparse 

Figure 7. Diurnal (a) sensible heat flux, (b) latent heat flux, (c) ground heat flux, and (d) net radiation during the simulation 
period over the urban regions for Noah (N; solid teal line with circle markers), Noah-MP (N-MP; solid orange line with 
square markers), Noah + WUDAPT (N-W; teal dashed line with circle markers), and Noah-MP + WUDAPT (N-MP-W) 
simulations.

Figure 8. Time series of (a) average 10-m wind speed and (b) 2-m relative humidity over the urban regions of the study area (Europe) during the 2017 heatwave. Noah 
(N; solid teal line with circle markers), Noah-MP (N-MP; solid orange line with square markers), Noah + WUDAPT (N-W; teal dashed line with circle markers), and 
Noah-MP + WUDAPT (N-MP-W; orange dashed line with square markers) simulations. The yellow shade indicates the decaying phase of the heatwave period (19–22 
June 2017).
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built-up areas (LCZs 2 and LCZ 9), the wind speed simulations did not significantly differ among the experi-
ments. Since, majority of the urban regions of the study area is covered by LCZ 6 (77%; lower roughness length 
compared to MODIS), wind speed values were higher. The increased wind speed and moisture content over the 
urban regions simulated by the N-W and N-MP-W experiments affected the amount of advection and changed the 
temperatures outside the urban regions.

In the case of relative humidity, both LSM and LULC choices have affected the simulated values (given the dif-
ference between the simulated trends from the experiments), although this contribution was not similar among 
different LCZs (Figure 9). For example, in LCZ 9, the simulated relative humidity remained similar among the 
experiments, while in LCZ 5 and LCZ 6, more notable differences were observed (Figure 9). Contrary, the wind 
speed, and relative humidity during the decay period were increased in LCZs 8 and LCZ 9. Higher wind speed 

Figure 9. Time series of average wind speed (WS) and relative humidity (RH) over the (a) compact mid-rise [local climate zones (LCZ 2)], (b) open mid-rise (LCZ 
5), (c) open low-rise (LCZ 6), (d) sparsely built (LCZ 8), and (e) large low-rise (LCZ 9) of the study area (Europe) during the 2017 heatwave. For Noah (N), Noah-MP 
(N-MP), Noah + WUDAPT (N-W), and Noah-MP + WUDAPT (N-MP-W) simulations.
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simulated in these two LCZs likely caused more energy exchange, and thus, the simulated air temperature showed 
increased during the heatwave period in these LCZs (Figure 6).

3.4. Factor Separation and Spatial Analysis

3.4.1. Air Temperature

Figure 10 shows the factor separation of the 0.95 quantile of mean, minimum, and maximum daily temperature 
from the entire simulation period. The 0.05 quantile and mean of minimum, maximum, and mean daily tempera-
ture are shown in Figures S13 and S14 in Supporting Information S1, respectively. Figures 10a–10f (also Figures 
S13 and S14 in Supporting Information S1) suggests that the impact of parametrization (F2) is more significant 
than that of urban land use (F1). Shifting from the default LULC to WUDAPT (F1) had a marginal cooling im-
pact over most of Europe and more notably impacted the maximum and minimum temperature simulations than 
the mean temperature. Changing the LSM from Noah to Noah-MP translated to strong warming over most of 

Figure 10. Factor separation based on the 0.95 quantile for the mean (a, d, g), minimum (b, e, h), and maximum (c, f, i) temperature over Europe during 08–25 June 
2017. (a–c) F1 is the effect of land use/land cover (LULC), (d–f) F2 is the effect of land surface parameterization, and (g–i) F12 is the combined effect of LULC and 
land surface parameterization.
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Europe while there were instances of decreasing temperature (particularly in 
minimum temperature simulations over Northern Europe). The temperature 
variations resulting from the LSMs (Noah and Noah-MP) were due to the 
semi-tile approach implemented in Noah-MP. The Noah LSM considers a 
single linearized energy balance equation representing combined ground—
vegetation surface, while the Noah-MP considers a three-layer energy—mass 
balance model. LSM and LULC (F12) combined effect showed warming, 
more notably on the minimum and maximum temperature simulations and 
in Western Europe.

The air temperature changes across the continent when incorporating LCZs 
indicates that urban areas affect the simulations outside the urban grid cells. 
Notably more than 1.9%, 4.2%, and 5.5% of the total land area witnessed a 
change of more than 1 K of mean, minimum, and maximum air temperature 
change due to the urban LCZs. With the inclusion of LCZs there is increased 
urban heterogeneity and more vegetative area (variable urban fraction 0.3–
1.0) than the default LULC (constant urban fraction of 0.9). The resulting 
impact on surface meteorology is noted through a 7% net mean increase in 
relative humidity combined with an increase in the surface winds, which is 
expected due to the relative decrease in urban roughness (LCZs compared to 
default). An interesting impact is the change in the temperatures beyond the 
urban grids likely due to advection. Note that, in the N and N-MP (as well 
as in N-W and N-MP-W) the urban grids (urban or LCZs grids) and urban 
parameterization remain the same, further highlighting that the urban grids 
affecting neighboring grids and vice-versa (as a two-way feedback).

As depicted in Figure 10, the impact of LSMs and urban land use were spa-
tially different. The variability over urban regions is illustrated as time series 
box plots shown in Figure 11. The impact of LCZ (F1) showed an overall 
decrease in temperature in most regions. On comparing with the urban areas, 
a decrease in ≈0.5 K is observed. It can also be noted that the change in tem-
perature from F1 extends outside the boundaries of the urban regions. The 
impact of parameterization (F2) increases the temperature in most of the re-
gions. Interestingly, for the urban regions, the changes in the temperature due 
to F2 are more than the F1, while using the same urban canopy model. The 
combined effect of LCZs and LSMs shows mixed changes in the temperature. 
The temperature variation is limited between −1.2 and 1.4 K from the Noah 
simulation for the urban areas.

3.4.2. Heat Index

Figures 12a–12d shows maximum HI simulated from the four different configurations during the heatwave event. 
The differences between these simulations were shown by the factor separation analysis (Figures 12e and 12g). 
The factor separation results were aligned with the findings described on the temperature variations (previous 
section). Using LCZs caused a lower HI over most of Europe except in some regions. The F2 factor (the impact of 
land models, Noah vs. Noah-MP) showed a strong warming impact over the entire region. The changes in the HI 
represent the changes that occurred from the combined effect of the temperature and relative humidity. The mean 
(maximum) of maximum HI from N is 21.6°C (43.0°C), N-MP is 22.3°C (46 .3°C), N-W is 21.5°C (44.3°C), and 
N-W-MP is 22.2°C (51.1°C). The maximum (minimum) values of the HI for F1, F2, and F12 are 9.4°C (−5.6°C), 
8.6°C (−6.4°C), and 11.5°C (−9.2°C), respectively.

Over the urban regions, in F1, there are several occurrences of maximum HI change of more than 2°C (see Figure 
S15 in Supporting Information S1). On the other hand, F2 increases mean and maximum HI values up to 4.5°C, 
while more than 50% of grids show almost no change in minimum HI values. F12 shows a mixed pattern from F1 
and F2. The maximum and HI values range from −3.5°C to 4°C, mean values are concentrated between −0.5°C 
and 0.5°C, and more than 50% of grids show no change in minimum values. Overall, maximum HI values are 

Figure 11. Box plots of daily mean air temperature changes over urban 
regions illustrated by box-plots for the F1, F2, and F12 factors during the 2017 
heatwave. F1 is the effect of land use/land cover (LULC), F2 is the effect of 
land surface parameterization, and F12 is the combined effect of LULC and 
land surface parameterization.
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most affected by the changes in the urban surface properties and land surface parameterization, thus affecting 
mean, while the minimum HI values are least affected.

4. Conclusions
In this study, we assessed the impact of LCZs and LSM parameterizations on simulating an extreme heatwave 
event over Europe. Accordingly, we simulated the 2017 heatwave event using WRF and considering four configu-
rations. We first simulated the heatwave using the WRF model coupled to the Noah and Noah-MP LSMs support-
ed with the default LULC to evaluate the effect of LSMs and then successfully replaced the default LULC in the 
Noah and Noah-MP with the WUDAPT LULC to evaluate the impact of detailed urban LCZs on the simulations. 
The key findings of this work are summarized as follows:

Figure 12. Maximum heat index over the study area (Europe) during the 2017 heatwave and its factor separation (F1, F2, and 
F12). (N: Noah, N-MP: Noah MP; N-W: Noah + WUDAPT; and N-MP-W: Noah MP + WUDAPT; F1 is the effect of land 
use/land cover (LULC), F2 is the effect of land surface parameterization, and F12 is the combined effect of LULC and land 
surface parameterization.
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1.  The combination of Noah with WUDAPT (the N-W experiment) simulated the air temperature more accu-
rately than other experiments. The representation of urban heterogeneity through the LCZs represented the 
local temperature variation within the urban areas and improved the overall temperature simulation for such a 
large-scale event. Also, the performance is improved by using WUDAPT for both Noah and Noah MP.

2.  The resulting accuracy from the N-W simulations was attributed to two major factors. The first factor was the 
parameterizations used in the Noah model as the temperature simulated by Noah was closer to the observations 
compared to the warmer temperature simulated by the Noah-MP scheme. Second, the incorporation of LCZs 
into the simulations altered the surface energy partitioning (caused more energy allocation to latent heat flux 
due to larger vegetated fractions in the urban areas) and reduced (improved) the simulated air temperature.

3.  A more detailed representation of urban areas by incorporating LCZs revealed an important finding that the 
urban areas could affect the air temperature outside their regions. More specifically, incorporating LCZs 
reduced surface roughness, increased moisture (due to vegetation), and wind speed; thus altering the air 
temperature outside of the urban periphery. The N and N-MP (also N-W and N-MP-W) simulations show the 
impact of surrounding areas on the urban grids; thus, a two-way feedback to and from the urban environments.

Our findings show the potential of using LCZs in the current atmospheric models to enhance the urban areas' 
representation and more accurate simulations. This improvement is significant, considering the intensification 
of the heatwaves in the mid-latitudes and the increasing fatality risk per each degree temperature increase. The 
study provides the first results to show the use of LCZ improves large-scale WRF simulation. Urban planners and 
policymakers can employ our findings in more generic frameworks to evaluate the impact of such events on the 
ecosystem, human health and plan accordingly for a particular LCZ (instead of treating an urban area as a whole).

Data Availability Statement
The WRF model outputs used for analysis in the study will be available at Zenodo via https://doi.org/10.5281/
zenodo.5511612 with Creative Commons Attribution 4.0 International license.
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